Permanent genetic tagging of podocytes: fate of injured podocytes in a mouse model of glomerular sclerosis.
نویسندگان
چکیده
Injured podocytes lose differentiation markers. Therefore, the true identity of severely injured podocytes remains unverified. A transgenic mouse model equipped with a podocyte-selective injury induction system was established. After induction of podocyte injury, mice rapidly developed glomerulosclerosis, with downregulation of podocyte marker proteins. Proliferating epithelial cells accumulated within Bowman's space, as seen in collapsing glomerulosclerosis. In this study, the fate of injured podocytes was pursued. Utilizing Cre-loxP recombination, the podocyte lineage was genetically labeled with lacZ in an irreversible manner. After podocyte injury, the number of lacZ-labeled cells, which were often negative for synaptopodin, progressively declined, correlating with glomerular damage. Parietal epithelial cells, but not lacZ-labeled podocytes, avidly proliferated. The cells proliferating within Bowman's capsule and, occasionally, on the outer surface of the glomerular basement membrane were lacZ-negative. Thus, when podocytes are severely injured, proliferating parietal epithelial cells migrate onto the visceral site, thereby mimicking proliferating podocytes.
منابع مشابه
Podocyte injury can be catching.
Podocyte loss is a central mediator of glomerular sclerosis. Because podocytes are terminally differentiated cells that lack the potential to proliferate, they are particularly vulnerable to attrition in response to critical levels of cell stress, leading to detachment, necrosis, or apoptosis. Just how much podocyte loss is necessary to generate an initial sclerotic lesion and whether injury ca...
متن کاملThe podocyte in health and disease: insights from the mouse.
The glomerular filtration barrier consists of the fenestrated endothelium, the glomerular basement membrane and the terminally differentiated visceral epithelial cells known as podocytes. It is now widely accepted that damage to, or originating within, the podocytes is a key event that initiates progression towards sclerosis in many glomerular diseases. A wide variety of strategies have been em...
متن کاملDecreased miR-26a Expression Correlates with the Progression of Podocyte Injury in Autoimmune Glomerulonephritis
MicroRNAs contribute to the pathogenesis of certain diseases and may serve as biomarkers. We analyzed glomerular microRNA expression in B6.MRLc1, which serve as a mouse model of autoimmune glomerulonephritis. We found that miR-26a was the most abundantly expressed microRNA in the glomerulus of normal C57BL/6 and that its glomerular expression in B6.MRLc1 was significantly lower than that in C57...
متن کاملDosage-dependent role of Rac1 in podocyte injury.
Activation of small GTPase Rac1 in podocytes is associated with rodent models of kidney injury and familial nephrotic syndrome. Induced Rac1 activation in podocytes in transgenic mice results in rapid transient proteinuria and foot process effacement, but not glomerular sclerosis. Thus it remains an open question whether abnormal activation of Rac1 in podocytes is sufficient to cause permanent ...
متن کاملAngiotensin type 1 receptor blocker restores podocyte potential to promote glomerular endothelial cell growth.
Both podocytes and glomerular endothelial cells (GEN) are postulated to play important roles in the progression and potential regression of glomerulosclerosis. Inhibition of angiotensin is crucial in treatment of chronic kidney disease, presumably via effects on BP and extracellular matrix. This study aimed to investigate how angiotensin inhibition altered the interactions between podocytes and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2005